Tutorial: Exploring Gaia data with TOPCAT and STILTS

Mark Taylor,
University of Bristol,
m.b.taylor@bristol.ac.uk

TOPCAT: http://www.starlink.ac.uk/topcat/ (version 4.7 or later recommended)
STILTS: http://www.starlink.ac.uk/stilts/ (version 3.2 or later recommended)

Mailing list: topcat-user@jiscmail.ac.uk

Version: 2021-02-03 Revision 4057778 (https://github.com/mbtaylor/tctuto)

Contents

1 Cluster identification #1: Messier 4 in proper motion space 2
 1.1 Acquire Gaia data in the M4 region 2
 1.2 Identify comoving cluster 2
 1.3 Manage Subsets 3
 1.4 Examine cluster members 3
 1.5 Determine parallax 3

2 Cluster identification #2: Hyades in 3-D velocity space 4
 2.1 Locate Gaia TAP service 4
 2.2 Explore the TAP service 4
 2.3 Acquire astrometric data 4
 2.4 Calculate 3-d velocity components 5
 2.5 Identify Hyades graphically in 3-d velocity space 5
 2.6 View positions 6
 2.7 Colour-magnitude diagram 6

3 Match Gaia and HST observations 7
 3.1 Acquire HST observations 7
 3.2 Crossmatch with Gaia 7
 3.3 Visualise the crossmatch 8
 3.4 Investigate and identify matches 8
 3.5 Alternative crossmatch: use local files 9

4 Messier 4 in proper motion space using STILTS 10
 4.1 Get STILTS running 10
 4.2 Acquire data from Cone Search service 10
 4.3 Manipulate the downloaded table using tpipe 10
 4.4 Plot using STILTS 11

5 Local Herzsprung-Russell Diagram 12
 5.1 Acquire data from TAP service 12
 5.2 Plot HRD 12
 5.3 Exclude astrometrically suspect sources 13
 5.4 Exclude photometrically suspect sources 13
 5.5 Explore the HRD 13

This tutorial uses data from Gaia Early Data Release 3 (EDR3) [1] to lead you through some of the capabilities of TOPCAT and STILTS. For best results, you should have the manuals to hand: http://www.starlink.ac.uk/topcat/sun253/ and http://www.starlink.ac.uk/stilts/sun256/.
Cluster identification #1: Messier 4 in proper motion space

In this example we will determine the mean parallax of the stars in the globular cluster Messier 4 (M4, or NGC 6121).

1.1 Acquire Gaia data in the M4 region

1. Start TOPCAT.
2. Open the VO|Cone Search window (i.e. use the Cone Search submenu of the VO menu in the main topcat window).
3. Fill in Keywords: “gaia edr3”, and hit Find Services.
4. There are a few options, that should mostly give similar results. The one with Short Name “eDR3 lite Cone” is a good choice. Select it by clicking on its row, and the partial URL of the service appears in the Cone URL field.
5. Fill in Object Name: “M4”, then hit Resolve to fill in sky position fields.
6. Radius: “0.3” (degrees)
7. Hit OK; new table is loaded into topcat main control window with about 50 000 rows. If the download is too slow, cancel and try with Radius: “0.1”, which retrieves about 20 000 rows, and maybe Verbosity: “1”, which reduces the number of columns requested.
8. Use the Graphics|Sky Plot window to see the positions on the sky.
9. Play with the plot. Note overdense regions are coloured darker. Use the options in the Form tab to change marker size, colour and shading. Practice navigation: use mouse drag and wheel (or CTRL-drag). Click the little button at bottom left for navigation help; note navigation details are different for different plot types.

1.2 Identify comoving cluster

1. Plot sources in proper motion space: Graphics|Plane Plot window; X: “pmra”, Y: “pmdec”
2. Note overdensity far from (0,0); use mouse to navigate
3. Graphically select this comoving cluster as new Subset: Subsets|Draw Subset Region button, drag mouse around cluster, hit button again
4. A New Subset dialogue pops up: fill in New Subset Name: “comoving”, Add Subset
5. Look in Subsets tab of plot window; turn All and comoving subsets off/on
1.3 Manage Subsets

1. Open the Views|Row Subsets window
2. See the new comoving subset
3. Create an additional subset that contains the background objects, i.e. those not in the comoving set: click to select the comoving row, then select the Subsets|Invert Subset action.
4. A new subset not_comoving will appear; if you like you can rename it “background” by double-clicking in the Name field

1.4 Examine cluster members

1. Go back to the Graphics|Sky Plot from section 1.1 (or open a new one)
2. In Subsets tab turn different subsets on/off using checkboxes
3. Plot the proper motions. In the Form tab, use the Forms menu and select the Add SkyVector item, with Delta Lon(*): “pmra”, Delta Lat: “pmdec”. The arrows will initially be much too long (units of degrees); you will have to set Unit: “scaled” (auto-scaling), and optionally adjust to taste with the Scale slider. Zoom in so you can see some individual objects. All the cluster objects have similar proper motions, non-cluster ones have various directions, or none (no measured P.M.).

1.5 Determine parallax

1. Plot histogram of parallaxes: Graphics|Histogram Plot, X: “parallax”
2. In Subsets tab, make sure only subsets comoving and not_comoving, not All, are plotted
3. Normalise histograms to the same height: click on the Bins control in the left-hand panel, select the General tab, and set Normalise to maximum. Return to histogram layer control
4. Zoom in horizontally (mouse below X axis, use drag and wheel/CTRL-drag) to read off the comoving peak/average parallax. Note the comoving (cluster) distribution is different from the background sample.
5. For a more accurate result, fit Gaussian to data: Forms menu in Form tab, Gaussian option. Then scroll to bottom of Gaussian layer description in Form tab, select Subset: “comoving”, and read off parallax Mean and S.D.
6. Invert mean parallax get distance to cluster (1000/parallax in mas = distance in parsec).
7. To do this without plotting, you can read off the mean and S.D. for parallax in the Views|Column Statistics window for the comoving subset.

Note: careful when inverting parallaxes!
In general \(r = \frac{1}{\varpi} \) is not reliable because of errors. It’s OK here because we are averaging over many measurements with smallish errors. Rule of thumb for single measurements: if \(\varpi/\sigma_\varpi > 5 \) it’s probably OK. See Luri et al. 2018 [2] for full discussion.
2 Cluster identification #2: Hyades in 3-D velocity space

This example locates the Hyades open cluster in 3-dimensional velocity space, using Gaia’s proper motion and radial velocity observations. We can’t start this time by making a positional query (cone search), since the Hyades is very delocalised on the sky, because it’s so close, so a cone would contain way too many sources. So we need to make a more sophisticated query using TAP.

2.1 Locate Gaia TAP service

1. Open the TAP window:
 ![VO/Table Access Protocol (TAP) Query](image)

2. Fill in Keywords: “gaia” and hit Find Services button

3. There are several services with Gaia data in various forms; GAIA (ESA) or ARI-Gaia (Heidelberg) are good choices. The service URL appears in the field at the bottom of the window.

4. Hit the Use Service button at the bottom

2.2 Explore the TAP service

Use the TAP window to explore the tables that are present and their metadata.

1. Browse the table list on the left. The tables in the gaiaedr3 schema are the ones with Gaia EDR3 data.

2. Select table gaiaedr3.gaia_source and look at Table and Columns tabs, to see information about available columns.

3. Look in the Service tab to see information about the service

4. Look in the Hints tab for a very basic ADQL cheat sheet

5. Type in to the bottom panel some very simple ADQL: “SELECT TOP 10 ra, dec FROM gaiaedr3.gaia_source”

6. Note that syntax errors (including partial or misspelt tables/columns) are highlighted in red.

7. Hit Run Query to run the query; if successful a new table is loaded

2.3 Acquire astrometric data

In the TAP window, execute this query:

```sql
SELECT ra, dec, pmra, pmdec, parallax, dr2_radial_velocity, bp_rp, 
    phot_g_mean_mag + 5*log10(parallax/100) as g_abs 
FROM gaiaedr3.gaia_source 
WHERE parallax > 15 
AND parallax_over_error > 5 
AND dr2_radial_velocity IS NOT NULL
```

The result should contain about 25,000 rows.

The query is for all the nearby sources (nominally within 1000/15 ≈ 66 parsec) with observed radial velocities (only about 7 million DR2/EDR3 sources have RV) and good determinations of parallax. The fact that parallax error is ≤20% means that it’s OK to invert parallax to calculate distance and absolute magnitude. We are retrieving all the basic astrometric parameters and some photometry.

The Hyades should be in there somewhere. Can we find them?
2.4 Calculate 3-d velocity components

We have the astrometric quantities measured by Gaia, which contain full phase space information, but need transformations to yield Cartesian position/velocity coordinates. TOPCAT's *expression language* can help.

1. Open the Help | Available Functions browser to see what functions TOPCAT provides (they are listed in the manual too).

2. Look under the Gaia entry to see astrometry-specific items

3. We will use the *astromUVW* and maybe *icrsToGal* and *astromXYZ* functions. The Examples items in the function documentation are useful; for use with the gaia_source catalogue, you can often just cut and paste, though note “radial_velocity” may need to be changed to “dr2_radial_velocity”.

4. Open the Views | Column Info window and choose the Columns | New Synthetic Column action

5. Create a new column giving Cartesian velocity components:

 Name: “uvw”, Units: “km/s” and for Expression:

 \[
 \text{astromUVW(array(ra, dec, parallax, pmra, pmdec, dr2_radial_velocity))}
 \]

 That calculates velocities along ICRS axes. If you want it in Galactic coordinates, wrap the whole expression in the *icrsToGal*(...) function.

6. Look at the new column in the Views | Table Data window (scroll all the way to the right). It is a 3-element array; you can access the array elements using expressions \[uvw[0]\], \[uvw[1]\], \[uvw[2]\]

2.5 Identify Hyades graphically in 3-d velocity space

1. Plot points in 3-d space: Graphics | Cube Plot, X: “uvw[0]”, Y: “uvw[1]”, Z: “uvw[2]”. Note, you can type in any expression for the plot coordinates, you don’t have to just select from available columns. The uvw column itself doesn’t appear in the selection list, since it’s not a scalar.

2. Select Mode: “density” in the Form tab. You can change the colour map to taste using the Density Shader selector.

3. Now, navigate through the cube to find an overdensity. This takes a bit of practice, but it’s fun once you work out how. Click the little button at bottom left for navigation help; the most useful actions are mouse wheel (2-fingered up/down drag on some trackpads) to zoom, and right click on a dense region to recenter.

4. Navigate so only the objects in the overdense region (about 200 of them?) are visible inside the wireframe — these are the Hyades.

5. Use Subsets | Subset From Visible, Name: “hyades”, Add Subset.
2.6 View positions

1. Go back and plot this subset on the sky (Graphics|Sky Plot).

2. Use the Subsets tab to make sure both hyades and background objects (All) are plotted in different colours. You might want to set Shading Mode: “flat” and fiddle with marker size and shape for clarity.

3. To get an all-sky view, use the Axes control, Projection tab, and change the Projection selector from “sin” to “aitoff”

4. If you like, you can plot it in 3-d space as well: Graphics|Sphere Plot.
 Lon: “ra”, Lat: “dec”, Radius: “1000./parallax”

2.7 Colour-magnitude diagram

1. Plot a colour-magnitude diagram: Graphics|Plane Plot, X: “bp-rp”, Y: “g_abs”.

2. Use the Axes control, Coords tab, Y Flip checkbox to flip it the right way round.

3. Use the Subsets tab to make sure both hyades and background objects (All) are plotted in different colours. Hyades sit on a nice tight main sequence!

4. There are a few outliers. Click on them, see the position show up in the sky plot too. In some cases, you can see by sky position that they are non-members. Open the Views|Data Window and see that the relevant row is highlighted when you click on a plotted point.

Bonus

- Can you find any other clusters in velocity space?
- Try refining the selection by localising in position space too.
- What is the mean distance to the Hyades?
- Try using Aladin and SAMP along with TOPCAT to investigate the outliers.
3 Match Gaia and HST observations

In this example we have a local catalogue from a publication by Gouliermis et al. 2006 [4], available in VizieR as J/ApJS/166/549. This contains about 100 000 sources observed by the ACS instrument on the Hubble Space Telescope at epoch $\approx J2004.6$ of stars in NGC346, a cluster in the Small Magellanic Cloud. We match these positions with positions in the main Gaia catalogue at $J2016.0$.

3.1 Acquire HST observations

There are various ways to do this, but here we will use TOPCAT's VizieR dialogue window, which talks directly to the VizieR catalogue service.

1. Open VO|VizieR Catalogue Service window
2. Object Name: “ngc346”, and Resolve to fill in RA and Dec
3. Radius: “1” (degrees)
4. Maximum Row Count: “100000” (or some large number)
5. Catalogue selection panel: By Keyword tab
6. Fill in Keywords: “Gouliermis”
7. Select “J/ApJS/166/549”
8. Hit the OK button at the bottom. A new table with 99079 rows should be loaded

Alternatively, you could download the table from the VizieR web page.

3.2 Crossmatch with Gaia

Now we want to find associations of the HST objects with sources from Gaia EDR3. Use the CDS X-Match service from TOPCAT. This uploads a local table to the CDS X-Match service, where the match is made against the Gaia EDR3 catalogue (or any other catalogue in VizieR). The resulting matched catalogue is then received as a new table in TOPCAT.

1. Open the VO|CDS Upload X-Match window
2. Fill in the fields:
 VizieR Table ID/Alias: “GAIA EDR3”
 Input Table: “J_ApJS_166_549_table2” (or whatever the HST table is called)
 RA column: “RAJ000”, Dec column: “DEJ2000” (should be filled in automatically)
 Radius: “1” (arcsec)
 Find Mode: “All” Important!
3. Hit Go: within a few seconds, it should inform you that a new table has been loaded, with about 24 000 rows.
4. Look at the columns of the new table (all HST followed by all Gaia) in the Views|Column Info window

Note: the match is done with Gaia coordinates rolled back (using Gaia proper motions) to J2000.0. These propagated columns are in the matched table as ra_epoch2000, dec_epoch2000.
3.3 Visualise the crossmatch

1. Open a Graphics|Sky Plot window

3. Overplot the actual matches. Add a new Pair layer: Layers|Add Pair Control and fill in:
 - Table: “4xGAIA EDR3” (or whatever the xmatch result table is called) and both sets of coordinates:
 - Lon(2): “ra”, Lat(2): “dec” (Gaia)

4. Zoom in to look at the associations. There are too many! What is this plot telling you?

5. You can fiddle around with the Form tab to make the plot clearer, e.g. add a Mark2 layer; change marker size, shape or colour.

Visualising the results of a crossmatch is very often a good idea, unless you’re pretty sure what you’re going to get. Here, you can see it was crucial to understand the results: most of these matches are spurious, because there is a high density of HST sources.

3.4 Investigate and identify matches

1. Add new columns giving RA/Dec discrepancies between HST and Gaia positions:
 - Open Views|Column Info window, then define new columns using Columns|New Synthetic Column:

2. Use Graphics|Plane Plot window, plot X: “deltaRa”, Y: “deltaDec”

3. Identify overdense region, select as in section 1.2, define new subset true_match.

4. Go back to the sky associations plot from the previous section, and use the Subsets tab to visualise which are the true matches. Why do you think this offset is not zero?

5. Make a colour-colour diagram combining HST and Gaia photometry:
 - What are the two populations?

Note: in the above we have used the Gaia columns ra and dec, giving the positions observed at J2016.0. It would be a bit better to use ra_epoch2000 and dec_epoch2000, the positions rolled back to J2000.0 using Gaia proper motions, since the HST observations were at about J2014.6, and even better to apply proper motions to get the positions at J2014.6. But the differences (motion over 10–15 years) are fairly small.
3.5 Alternative crossmatch: use local files

The crossmatch in section 3.2 was done by sending a local file to an external service. This is often an efficient way to do it, but there are other options. Here, we will do the same crossmatch by operating on two local files with positions covering the same sky region.

1. First, retrieve Gaia data in the region of interest. Use the VO|Cone Search window to a Gaia service as in section 1.1, but this time fill in Object Name: “ngc346”, Radius: “0.05” (degrees).

2. Plot the Gouliermis (from VizieR) and Gaia (from Cone Search) datasets on the sky: open the Graphics|Sky Plot window, fill in RA and Dec as Lat and Lon for one of the tables, then use the Layers|Add Position Control action to overplot the same thing for the other dataset.

3. Open the Joins|Pair Match window from the main control window. Default Match Criteria (Sky, 1 arcsec) are OK in this case. Fill in the Table 1 and Table 2 details for the Gouliermis and Gaia tables. Entry Match Selection: “All matches”.

4. Hit Go and wait a few seconds for the match to complete.

5. When complete, a popup window will tell you, and offer to Plot Result. If you select this option, you will see a plot like the one from section 3.3, except that the unmatched Gaia sources are also plotted (which can sometimes be useful information).

Other matching options are available in the local match windows, including identifying objects that don’t match, matching internally within a table, matching between three or more tables, etc. Note that unlike most things in TOPCAT, crossmatching can take up significant amounts of memory, so matching multi-million-row tables can sometimes grind to a halt or fail.

Bonus

- Use the Graphics|Histogram Plot (as in section 1.5) to find the mean values of δRA, δDec for the true matches. What do these values tell you?

- The match done here is between Gaia positions at J2016.0 and HST positions taken at approximately J2004.6. When using the X-Match service in section 3.2, Gaia proper motions were automatically applied to predict the Gaia positions at J2000.0. Use the epochProp function in the expression language to do the match with the positions as Gaia proper motions predict for J2004.6. Does it make much difference?
4 Messier 4 in proper motion space using STILTS

In this section we will re-do the determination of the distance to M4 from section 1, but this time from the command line, though we will use some of the results of the earlier GUI activity. Using TOPCAT interactively to work out how to write STILTS scripts for later batch use like this is a common pattern of work.

4.1 Get STILTS running

1. Unlike TOPCAT, you can’t bluff your way through STILTS by pointing’n’clicking; you’ll need some documentation. Find the manual here at http://www.starlink.ac.uk/stilts/sun256/ or maybe just google for “stilts” and go to the Documentation section.

2. Make sure you have it installed. “java -jar stilts.jar ...” should work. If you have topcat, you can run “java -jar topcat-full.jar -stilts ...” instead. More convenient (on Un*x), download the stilts script into the same directory as topcat-full.jar (or stilts.jar). Then the directory needs to be on your path, or you can use the full pathname or set up an alias. We will write just “stilts” from now on.

3. Run a command:

```
stilts calc expression="1+2"
```

should print out “3”

4. Find the documentation for the calc command in the manual (Appendix B). Look at the Usage and Examples subsections.

5. Get command-line help by running “stilts calc help” and “stilts calc help=expression”.

4.2 Acquire data from Cone Search service

1. Investigate the STILTS cone command; see the documentation in Appendix B of the manual (http://www.starlink.ac.uk/stilts/sun256/cone.html) and run

```
stilts cone help
```

There is a documentation bug! (STILTS v3.4); the out parameter is also required to give an output file

2. Find out the cone search parameters we used in 1.1. This includes the service URL (from the Cone URL field) and the central RA (longitude) and Dec (latitude) parameters of M4, as well as the search radius.

3. Putting those together, we need to run

```
stilts cone serviceurl="http://dc.zah.uni-heidelberg.de/gaia/q3/cone/scs.xml?"
    lon=245.89675 lat=-26.52575 radius=0.3 out=m4.fits
```

to give the output file m4.fits — the output format has been determined by file extension (you can write e.g. m4.vot if you prefer).

Note: some values containing whitespace or other strange characters need to be quoted to prevent the shell expanding them. This quoting can get a bit messy. I believe the commands as written in this section will work in common Un*x shells, also Windows command prompt and PowerShell.

4.3 Manipulate the downloaded table using tpipe

We will perform some processing on the downloaded table using the tpipe command. This reads an input table, optionally performs operations on it, and writes it to output, either to a file (in the same or different format) or some other destination. It works like a Unix pipeline.

The operations are defined by adding filters such as “select” (retain only some rows) or “addcol” (add a new column). Filters are specified by adding using zero or more “cmd=” parameters on the command line, and documented in Section 6.1: “Processing Filters” of the STILTS manual.

The default output mode is write to a file, but other options such as “meta” (display column metadata), “count” (count rows) and “stats” (calculate mean, st.dev etc) are also available. Select non-default output modes using the “omode=” parameter on the command line, documented in Section 6.4: “Output Modes” of the manual.

1. Count the rows in the query result table:
stilts tpipe in=m4.fits omode=count

2. See what columns the query result table has:

stilts tpipe in=m4.fits omode=meta

or for a more manageable output (customised metadata; the “meta” filter turns the table into a table with one row per input table column):

stilts tpipe in=m4.fits cmd="meta name units class"

3. For convenience, write a new table with only a few of the columns. The keepcols filter produces a table with only the listed columns (the list is space-separated and needs to be quoted). The clearparams filter removes per-table metadata.

stilts tpipe in=m4.fits cmd="keepcols 'ra dec pmra pmdec parallax'' cmd='clearparams *'

 out=m4mini.fits

4. Calculate statistics using the stats output mode:

stilts tpipe in=m4mini.fits omode=stats

5. View a few rows of the table. The using the head filter keeps only the first few rows:

stilts tpipe in=m4mini.fits cmd="head 10"

You can select rows using the select filter, and combine filters by stringing them together on the command line. Try both:

stilts tpipe in=m4mini.fits cmd="head 10" cmd="select parallax>0"

stilts tpipe in=m4mini.fits cmd="select parallax>0" cmd="head 10"

Why are they different?

6. Add a column calculating estimated distance:

stilts tpipe in=m4mini.fits cmd="addcol dist_est 1000/parallax" cmd="head 10"

7. Write a new table containing only those rows in the comoving region of proper motion space. Looking at the proper motion plot from section 1.2 you can estimate the expression by eye as being approximately a circle radius 2 centered on (-12.6,-18.9). The select filter includes only rows for which the given expression is true, and the hypot(a,b) function is short for \(\sqrt{x^2+y^2} \).

stilts tpipe in=m4mini.fits cmd="select 'hypot(pmra+12.6,pmdec+18.9)<2'" out=cluster.fits

In fact TOPCAT can produce these geometric expressions for you: you can use the Subsets|Draw Algebraic Subset (Ellipse) action in the plot window to generate them graphically.

8. Calculate the mean and S.D. of cluster parallax using the previous selection:

stilts tpipe in=cluster.fits cmd="keepcols 'parallax'" omode=stats

or do it all in one go:

stilts tpipe in=m4.fits cmd="select 'hypot(pmra+12.6,pmdec+18.9)<2'' cmd="keepcols 'parallax''

 cmd="stats name mean stdev"

4.4 Plot using STILTS

1. Plot the cluster on the screen:

stilts plot2sky in=cluster.fits layer1=mark lon=ra lat=dec

 Note that this plot is interactive — you can zoom and drag it around as in a TOPCAT plot window.

2. Create a plot graphics file. Just add an output parameter like “out=plot.png” or “out=plot.pdf” to the above plot2sky command to write static output files.

3. Interoperate with TOPCAT: STILTS plotting commands can get quite complicated. If you have a plot in TOPCAT and want to reproduce it in STILTS, look at the STILTS control, which shows you the invocation needed to reproduce it.

There is lots more that tpipe, and STILTS in general, can do. Explore the manual!
5 Local Herzsprung-Russell Diagram

In this example we will use a TAP query to download all the nearby Gaia sources with good astrometry and photometry, and calculate their absolute magnitudes to construct an HR diagram, performing a couple of cleaning operations to improve the data. This procedure loosely follows Appendix C of the Gaia DR2 astrometry paper Lindegren et al. 2018 [3].

5.1 Acquire data from TAP service

1. Open the TAP window | VO|Table Access Protocol (TAP) Query

2. Select one of the Gaia services (probably the ESA one) and Use Service

3. Choose Mode: “Asynchronous” (just above the ADQL text entry panel). This query may take a minute or two, so a synchronous query might time out (with the unhelpful result, probably, “TAP response is not a VOTable”).

4. Execute the following query:

```sql
SELECT ra, dec, parallax, phot_g_mean_mag, bp_rp,
     astrometric_excess_noise,
     phot_bp_rp_excess_factor
FROM gaiadr2.gaia_source
WHERE parallax > 10
    AND parallax_over_error > 10
    AND phot_bp_mean_flux_over_error > 10
    AND phot_rp_mean_flux_over_error > 10
```

You should get a table with 338,833 sources; they are nominally within 100 pc, and have ϖ, BP and RP with small errors. In particular, the parallax error is small enough that ϖ^{-1} is a reasonable estimate of distance.

5.2 Plot HRD

1. Add a new column calculating absolute G magnitude, using parallax: ⚪ Columns|New Synthetic Column in ⚪ Column Info window:
 Name: “g_abs”,
 Expression: “phot_g_mean_mag + 5*log10(parallax/100)”,
 Units: “mag”

3. Play around with different Shading Modes in Form tab.

4. Colour points using the other columns using modes Aux, Weighted. What’s the difference between the two?
5.3 Exclude astrometrically suspect sources

1. Try different weighting/aux columns to see which one can be used to exclude points in the unwanted region between the main sequence and white dwarf branch.

2. Experiment with the colour map settings (Aux Axis control) to find a suitable threshold.

3. Create a subset using an algebraic expression that excludes the spurious points: go to the Views|Row Subsets window and use the Subsets|New Subset action: Subset Name: “astrom_ok”, Expression: “astrometric_excess_noise < 1”

4. Go back to the plot, and make sure only the astrom_ok subset is plotted (Subsets tab). Now there are fewer spurious sources.

The astrometric_excess_noise column characterises the goodness of fit of the astrometric solution to the observations. But you didn’t need to know that to improve the data like this.

5.4 Exclude photometrically suspect sources

1. Open a new Graphics|Plane Plot, with X: “bp_rp” (BP − RP colour), Y: “phot_bp_rp_excess_factor”.

The quantity on the Y axis is some measure of photometric reliability. High values are bad, but how high is colour-dependent. We will define a region in this space to exclude the unusually high values. This time we will interactively draw a polygon rather than a blob.

2. Click the Subsets|Draw Subset Polygon action

3. Select Point inclusion mode: “BELOW” in the popup

4. Click on a few points above the overdense region until the shaded area roughly covers it.

5. When you’re done, click on the button again.

6. Fill in the Subset Name field in the popup (e.g. photom_ok) and hit OK

7. Go to the Views|Row Subsets window, where you can see the new subset alongside astrom_ok.

8. Create a new subset combining the two: Subsets|New Subset action: Subset Name: “ok” Expression: “astrom_ok & photom_ok”

9. Go back to the plot, and make sure only the ok subset is plotted (Subsets tab). Now there are fewer spurious sources.

Leave this session open, we’ll need some of it for the next section.

5.5 Explore the HRD

The photometry and astrometry in Gaia DR2 is so good that plotting a Herzsprung-Russell Diagram by following the steps above gives a lot of astrophysical information. Identify the different populations with the help of the zoom and shading options in TOPCAT: main sequence, giant branches, the double-stranded white dwarfs sequence representing the split between helium and hydrogen burning, and if you look closely a notch in the main sequence near absolute G magnitude of 10 (Jao et al 2018 [5]).
Bonus

Go back and reproduce all the other exercises using STILTS!

References

Acknowledgements

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.